论文部分内容阅读
传统的高分辨距离像(HRRP)统计识别方法大部分只使用雷达目标高分辨回波的幅值信息且需要大量的训练样本保证统计模型参数学习的精度。为了充分利用高分辨回波的相位信息,在雷达采样率有限、训练样本数不足的条件下保证统计识别的性能,该文提出一种多任务学习(MTL)复数因子分析(CFA)模型,将数据描述推广到复数域,将每个方位帧训练样本的统计建模视为单一的学习任务,各学习任务共享加载矩阵,利用贝塔伯努利(Beta-Bernoulli)稀疏先验自适应地选择各任务需要的因子,完成多任务的共同学习。基于实测数据的识