论文部分内容阅读
目的:研究深度学习卷积神经网络(CNNs)在甲状腺结节超声图像良恶性分类问题中的可行性并评估效果。方法:运用迁移学习的方式,对在自然图像训练集上获取预训练参数的3种卷积神经网络模型(VGG19模型、Inception V3模型和DenseNet 161模型)进行训练,并对其进行调整,使用甲状腺结节超声图像对3种卷积神经网络模型进行测试。结果:VGG 19模型分类效果较差,正确率为88.18%,低于Inception V3和DenseNet 161模型的正确率(92.85%和92.91%)。Inceptio