基于改进的U-Net和YOLOv5的绝缘子掩模获取与缺陷检测

来源 :数据采集与处理 | 被引量 : 0次 | 上传用户:sffntm
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
输电线路的绝缘子定期巡检是必不可少的一项任务,而传统的人工巡检存在着效率低、工作强度大等问题。因此,本文设计了一种改进的U-Net模型实现对绝缘子的分割,并使用改进的YOLOv5实现在复杂背景下对爆破绝缘子的定位。本文基于U-Net图像语义分割模型,提出一种改进的网络结构SERes-Unet。模型引入残差结构减少卷积过程中存在的梯度消失、结构信息损耗的影响,引入注意力机制对特征权重进行校正,从而提升网络性能。为实现对高分辨率图像的爆破绝缘子检测,提出将图片进行切割再进行检测,再通过非极大值抑制(No
其他文献