论文部分内容阅读
把高温热解数据外推到干酪根的成熟条件需要外推几个数量级。由于高温状态的化学动力学很可能不同于低温状态的,因而这种外推无意义。 我们对格林河干酪根进行了缓慢的热处理,徐去了其中具低活化能的不含油物质。对该提纯物质的低温等温反应(209—388℃)的侧定结果表明,高温下(400—500℃)得到的格林河干酪根生油反应的动力学在温度低至209℃时同样有效。相同的阿雷尼厄斯参数适用于整个范围:k=1×10~(13)exp(-51300/RT)s~(-1)。这意味着,整个分解机理(极为可能是适用于高温的基本机理)在低温(209℃)下,或许在地质温度(如50—160℃)下也是适用的。在烃的基本分解过口中,烯烃首先生成。我们认为,随着加热时间的延长,烯烃转化为烷烃,可能利用了干酪根转化过程中的残余氢。
Extrapolation of pyrolysis data to kerogen maturation conditions requires extrapolation of orders of magnitude. This extrapolation is meaningless because the chemical kinetics at high temperatures are likely to be different from those at lower temperatures. We conducted a slow heat treatment of the kerogen kerogen and went to the non-oily substance with low activation energy. Side-by-side results of the cryogenic isothermal reaction (209-388 ° C) of the purified material show that the kinetics of the kerogen kerogen reaction obtained at high temperatures (400-500 ° C) are equally effective at temperatures as low as 209 ° C. The same Arrhenius parameters apply for the entire range: k = 1 × 10 ~ (13) exp (-51300 / RT) s ~ (-1). This means that the entire decomposition mechanism, most likely the underlying mechanism for high temperatures, is also applicable at low temperatures (209 ° C), perhaps at geological temperatures (eg 50-160 ° C). In the basic decomposition of hydrocarbons crossover, olefins first generated. In our opinion, the conversion of olefins to alkanes with increasing heating time may make use of the residual hydrogen during kerogen conversion.