论文部分内容阅读
Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a system consisting of a diamond slider and a silver substrate. The mechanisms of the stick-slip behavior are investigated by considering sliding speeds between 10 m/s and 200 m/s.The analyses of the shear distance between the upmost layer and the downmost layer and displacements of a column of atoms in the slider show that shearing deformation of the slider is the main cause of the stick-slip phenomenon. Our simulations also present that a commensurate fit between the two contact surfaces is unimportant for the stick-slip friction.
Molecular dynamics simulations have been performed to explore the atomic-scale sliding friction, especially the stick-slip friction, in a diamond sliding and a silver substrate. The mechanisms of the stick-slip behavior are investigated by considering sliding speeds between 10 m / s and 200 m / s. The analyzes of the shear distance between the upmost layer and the downmost layer and displacements of a column of atoms in the slider show that shearing deformation of the slider is the main cause of the stick-slip phenomenon. Our simulations also present that a commensurate fit between the two contact surfaces is unimportant for the stick-slip friction.