论文部分内容阅读
道路交通标志的背景相当复杂,颜色失真严重并存在不同程度的几何失真现象。不变矩是图像的一种统计特征,具有平移不变性、旋转不变性和比例缩放不变性,被广泛的应用于图像识别中。在研究了Hu矩和Zerni-ke矩基础上,提出基于Zernike矩与BP网络相结合的道路交通标志识别方法。识别过程分别对图像进行了Hu矩和Zernike矩特征提取、BP网络训练与测试、对形变图像进行分类识别。结果表明:基于Zernike矩和BP网络的交通标志识别方法具有很强的抗图像平移、缩放和旋转识别能力,实现简单、训练速度快、识别率高等特点,且识别准确率优于Hu不变矩目标自动识别。