论文部分内容阅读
直接从条件方程或误差方程系数阵入手,利用修正的Gram-Schmidt正交化过程对系数阵进行三角分解,实现最小二乘求解,导出了基于修正的Gram-Schmidt正交化过程求解系数阵广义逆的数学公式和计算步骤,给出了通过广义逆表示的未知数解向量及其协因数阵的数学表达式。计算过程不仅避免了对矩阵的求逆,并从理论上解决了Gram-Schmidt正交化方法由于舍入误差的影响表现出的数值不稳定性问题,从而很好地解决了具有秩亏系数阵方程组解的不唯一性。算例结果表明,基于修正的Gram-Schmidt正交化方法可