论文部分内容阅读
The change of P+ deep well doping will affect the charge collection of the active and passive devices in nano-technology,thus affecting the propagated single event transient(SET) pulsewidths in circuits.The propagated SET pulsewidths can be quenched by reducing the doping of P+ deep well in the appropriate range.The study shows that the doping of P+ deep well mainly affects the bipolar amplification component of SET current,and that changing the P+ deep well doping has little effect on NMOS but great effect on PMOS.
The change of P + deep well doping will affect the charge collection of the active and passive devices in nano-technology, thus affecting the propagated single event transient (SET) pulsewidths in circuits. The propagated SET pulsewidths can be quenched by reducing the doping of P + deep well in the appropriate range. The study shows that doping of P + deep well mainly affects the bipolar amplification component of SET current, and that changing the P + deep well doping has little effect on NMOS but great effect on PMOS.