论文部分内容阅读
目的以纳米金为载体,对金黄色葡萄球菌进行可视化检测。方法将与金黄色葡萄球菌目标序列互补的DNA1和DNA2连接到纳米金上,当体系中出现金黄色葡萄球菌目标序列时,两条短链DNA就会与目标序列杂交,使纳米金之间的距离拉近,从而使纳米金发生团聚,导致纳米金的颜色从酒红色变为蓝色。由于金黄色葡萄球菌目标序列浓度的不同,从而引起纳米金之间团聚的程度不同,纳米金就会相应的呈现出不同的颜色变化,这样就可达到可视化检测的目的。结果在最优实验条件下,本方法在检测金黄色葡萄球菌目标序列时,浓度在1~1000pmol/L范围内呈现良好的线性关系,检出限为0.5pmol/L;检测金黄色葡萄球菌时,线性范围为30~9800CFU/mL,检出限为25CFU/mL。结论通过特异性和加标回收实验,证明本方法可以用于实际样品的检测。
Objective To nano-gold as a carrier for Staphylococcus aureus visual detection. Methods DNA1 and DNA2, complementary to the target sequence of Staphylococcus aureus, were connected to AuNPs. When Staphylococcus aureus target sequence appeared in the system, the two short-chain DNAs would hybridize with the target sequence, Close to the distance, so that nano-gold reunion, resulting in the color of gold from red wine turned blue. Due to the different concentration of the target sequence of Staphylococcus aureus, resulting in different levels of agglomeration between nano-gold, nano-gold will show a corresponding color change, so you can achieve the purpose of visual detection. Results Under the optimal experimental conditions, this method showed a good linearity in the range of 1 ~ 1000 pmol / L when detecting the target sequence of S. aureus with a detection limit of 0.5 pmol / L. When detecting Staphylococcus aureus , The linear range of 30 ~ 9800CFU / mL, the detection limit of 25CFU / mL. Conclusion Through the specificity and spike recovery experiments, this method can be used to detect the actual samples.