Accelerating inverse crystal structure prediction by machine learning:A case study of carbon allotro

来源 :物理学前沿 | 被引量 : 0次 | 上传用户:qiuxue6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Based on structure prediction method,the machine learning method is used instead of the density functional theory(DFT)method to predict the material properties,thereby accelerating the material search process.In this paper,we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database.We then trained a machine learning(ML)model that specifically predicts the elastic modulus(bulk modulus,shear modulus,and the Young's modulus)and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope.We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young's modulus.A new carbon allotrope not included in the Samara Carbon Allotrope Database,named Cmcm-C24,which exhibits a hardness greater than 80 GPa,was firstly revealed.The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap.The structural stability,elastic modulus,and electronic properties of the new carbon allotrope were systematically studied,and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.
其他文献
耕地利用转型代表耕地利用形态的趋势性变化。论文以京津冀地区157个县域空间为基本研究单元,从显性形态与隐性形态双重属性出发构建耕地利用形态指标体系,运用冷热点、空间变差函数等方法分析1990—2015年耕地利用形态变化的时空特征,在此基础上,利用空间误差模型(spatial error model, SEM)对耕地利用转型的驱动机制进行了定量分析。结果表明:①京津冀地区耕地利用形态指数空间分布呈东
社区化新零售是新兴的商业模式,也是商业与社区互动的重要场域,值得从城市空间视角深入探究。基于南京市盒马鲜生及相关兴趣点(point of interest,POI)与兴趣面(area of interest,AOI)数据,综合运用空间分析、定量统计、实地调研等方法,解析盒马鲜生的服务类型及对象、空间布局特征、区位选址因素,并提出优化发展建议。研究发现:①南京市盒马鲜生服务对象以社区为主,酒店、写字
论文以贵州省惠水县乡村旅游度假区好花红村为典型案例,运用空间分析方法,利用高分辨率遥感影像和实地调查访问数据,分析了2006—2019年好花红村土地利用功能演变规律,探讨了土地利用功能转型助推乡村振兴的作用。结果表明:①好花红村土地利用功能受土地利用转型的影响,由传统单一的农业生产功能、社会保障功能和生态保育功能转变为复合型观光休闲功能和经济发展功能,增加了经济效益的同时保证了生态效益,土地利用功