论文部分内容阅读
Based on structure prediction method,the machine learning method is used instead of the density functional theory(DFT)method to predict the material properties,thereby accelerating the material search process.In this paper,we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database.We then trained a machine learning(ML)model that specifically predicts the elastic modulus(bulk modulus,shear modulus,and the Young's modulus)and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope.We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young's modulus.A new carbon allotrope not included in the Samara Carbon Allotrope Database,named Cmcm-C24,which exhibits a hardness greater than 80 GPa,was firstly revealed.The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap.The structural stability,elastic modulus,and electronic properties of the new carbon allotrope were systematically studied,and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.