论文部分内容阅读
已知数列an =pxn+ qyn,其中 p、q、x、y∈R ,n∈N ,则有an+2 =(x+ y)an+1-xyan. 证明 ∵an =pxn + qyn,∴ (x+ y)an+1-xyan=(x + y) (pxn+1+ qyn+1) -xy(pxn + qyn)=pxn+2 + qxyn+1+ pxn+1y + qy
Known series an = pxn + qyn, where p, q, x, y ∈ R, n ∈ N, then there is an + 2 = (x + y) an + 1 - xyan. Proof ∵ an = pxn + qyn, ∴ (x+ y)an+1-xyan=(x + y) (pxn+1+ qyn+1) -xy(pxn + qyn)=pxn+2 + qxyn+1+ pxn+1y + qy