论文部分内容阅读
设a1,a2,…,an(n≥2)都是正整数,且(a1,a2,…,an)=1.记线性型a1x1+a2x2+…+anxn。当xi≥0且xi∈Z(i=1,2,…,n)时不可表出的最大整数为g(a1,a2,…,an),作者研究了g(a1,a2,…,an)的存在性及其解法问题也即一次不定方程a1x1+a2x2+…+anxn=N的Frobenius问题.利用初等而简便的方法,作者给出了Frobenius问题的一种算法,并由此得到了a1,a2,…,an满足特殊条件时g(a1,a2,…,an)的简便而有效的计算公式.