基于无监督方法的视频中的人物识别

来源 :计算机与现代化 | 被引量 : 3次 | 上传用户:tjpu0510420215
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于无监督的显著性学习方法提出一种新颖的人物识别方法。它在训练程序部分不需要身份标签就能提取出突出的特征。首先利用相邻约束斑块匹配在图片对之间构建稠密对应。该方法在处理由于较大的视觉角度变化和人物姿势变化而引起的图片对之间不对应的情况非常有效。其次,它应用一种无监督的方法来学习人物的显著性。为了提高实验的性能,在斑块匹配过程中融合了这种人物的显著性特征。在VIPeR数据集上进行的实验证实了该方法的正确性,且性能略优于文献中提出的e Bi Cov方法及e LDFV方法。
其他文献
对工业生产线上规程化操作动作进行手势跟踪与动作识别研究。首先选取YCbCr颜色模型进行手部区域识别,获得完整手部区域;然后利用Euclidean距离变换计算相邻2个手部运动轨迹点之间的距离和各帧图像的手部运动速度;再利用扩展有限状态机模型实现手部运动的分割,将分割的多个动作与建立的动作模板匹配,利用Hausdorff距离匹配法判断匹配结果的准确性,实现手部动作的识别。实验结果表明:该手部动作识别算
资源调度作为云资源管理的一个重要手段,直接关系到云计算的整体稳定性和整体效果。由于用户众多并且需求的多样性,导致云计算环境中任务调度的复杂和困难;如果调度算法不好,结果
针对高维优化问题,随机初始化的粒子群算法中不同维的收敛情况不同,常用惯性权重不能很好地平衡全局搜索和局部搜索,且算法也易陷入局部最优。本文提出一种基于惯性权重维正弦调