基于PSO优化LS-SVM的刀具磨损状态识别

来源 :清华大学学报(自然科学版) | 被引量 : 0次 | 上传用户:chengyfei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为监测刀具的磨损状态,该文建立了一个基于声发射的刀具磨损状态监测系统。在刀具磨损状态监测实验中,采集加工过程中的声发射信号,提取方根幅值、绝对值均值、均方根、最大值作为反映刀具磨损的时域特征值。针对人工神经网络容易陷入局部极小值、结构难以确定、学习收敛速度慢等缺点,提出最小二乘支持向量机(least square support vector machine,LS-SVM)的刀具磨损状态识别方法。针对LS-SVM性能依赖于惩罚因子和核参数,利用粒子群优化(particle swarm optimization,PSO)算法对LSSVM参数进行自动寻优,建立PSO优化LS-SVM模型进行刀具磨损状态识别。结果表明:与LS-SVM识别模型相比,优化后的LS-SVM模型具有更高的识别率。 In order to monitor the wear status of the tool, an acoustic emission-based tool wear monitoring system was established. In the tool wear state monitoring experiment, the acoustic emission signals during processing were collected and the square root mean square value, root mean square value and root mean square value were extracted as the time-domain eigenvalues ​​reflecting tool wear. Aimed at the disadvantages of artificial neural network, such as local minima, easy to determine structure and slow learning convergence, a method of tool wear identification based on least square support vector machine (LS-SVM) is proposed. The LS-SVM performance is dependent on the penalty factor and kernel parameters. The particle swarm optimization (PSO) algorithm is used to optimize the LSSVM parameters automatically. The PSO-optimized LS-SVM model is established to identify the tool wear state. The results show that compared with the LS-SVM recognition model, the optimized LS-SVM model has a higher recognition rate.
其他文献
目的:观察茯苓配合有氧运动对大鼠动脉粥样硬化的预防作用并探讨其可能机制,为开发新的动脉粥样硬化防治方法提供理论依据。方法:1.实验动物分组与造模:60只12周龄雄性Sprague-Dawley大鼠随机平均分为空白组(C组)、高脂组(HC组)、药物组(M组)、生理盐水组(SC组)和联合干预组(ME组)。空白组(C组)采用普通饲料喂养,其余各组采用60万IU/kg维生素D3一次性腹腔注射结合高脂饲料喂
<正>9月4日21:35,《最忆是杭州》G20峰会文艺晚会在杭州西湖曲院风荷的岳湖湖面进行现场直播,央视综合、综艺、中文国际、新闻等频道同步并机直播。国家主席习近平及出席二十