论文部分内容阅读
针对经典手势识别方法中在旋转变化与偏移情况下识别率不高的问题,提出一种基于稀疏表示的手势识别算法。通过最小二乘法求解手势特征的稀疏表示,利用Sebastien手势库训练构建出稀疏表示手势冗余字典,最后根据残差最小值实现手势识别。实验结果表明:在手势发生旋转变化和偏移的情况下,所提出的基于稀疏表示的手势识别算法识别率高于经典的最近邻分类手势识别算法。