论文部分内容阅读
以铣削难加工材料——高锰钢加工过程为研究对象。建立了以铣削力作为监测信号的铣刀磨损监测实验系统。应用小波包理论对铣削力信号进行分析和消噪处理。并提取了信号的能量特征作为神经网络的输入向量。基于神经网络极强的非线性映射能力及分类能力。选用小波包分析与BP网络结合的方式对刀具磨损状态进行识别。建立了模式识别BP网络结构,构造了网络训练样本及测试样本。对网络进行了训练、仿真及验证测试,结果表明该网络能够对刀具磨损状态进行准确的识别。对刀具的在线监测具有良好的现实意义。