论文部分内容阅读
针对现有合作学习算法存在频繁通信、能量消耗过大等问题,应用目标跟踪建立任务模型,文章提出一种基于Q学习和TD误差(Q-learning and TDerror,QT)的传感器节点任务调度算法。具体包括将传感器节点任务调度问题映射成Q学习可解决的学习问题,建立邻居节点间的协作机制以及定义延迟回报、状态空间等基本学习元素。在协作机制中,QT使得传感器节点利用个体和群体的TD误差,通过动态改变自身的学习速度来平衡自身利益和群体利益。此外,QT根据Metropolis准则提高节点学习前期的探索概率,优化任务选择。