论文部分内容阅读
K均值算法虽被广泛应用,但其算法性能和算法稳定性严重依赖算法的初始化过程,尤其是初始聚类中心的选取。比较合理的聚类中心应该出现在数据密集的区域,基于这个假设,提出了一种依赖数据局部密度的初始化调优算法。该算法以数据的局部密度函数为依据,并在高密度区域选取初始聚类中心。与同类算法相比,该算法有如下特点:能够自主发现数据集中数据分布的局部密集度;对类别数目较多的数据表现出更好的性能;对离群点和噪声鲁棒;易于实现。