论文部分内容阅读
针对MEMS IMU误差累积问题,在对误差分析建模的基础上,利用其高低频和时序特性,研究了一种小波变换和长短时记忆神经网络相结合的去噪方法。首先通过Allan方差分析IMU输出误差特性,构造误差模型,其次借助小波变换将IMU误差分解为高低频成分,分别利用小波阈值去噪和长短时记忆网络建模来降低噪声,最后以小波重构方法得到去噪后的IMU测量值。将此方法应用于6D激光标靶和IMU组合测量系统的姿态解算,经过比对实验,能够有效分离随机误差频率特性,进一步消除高频噪声,优化姿态误差,提升组合系统动态性能。