论文部分内容阅读
采用增材制造技术制备的金属三维点阵结构可能存在裂纹、未熔合、断层等缺陷,导致金属点阵结构的结构-功能性能下降,为此提出一种金属三维多层点阵结构内部缺陷的检测方法。在Faster R-卷积神经网络架构基础上设计特征提取网络,结合工业CT扫描图片,对得到的断层灰度图像中缺陷部位进行快速、准确、智能检测识别和定位。实验验证结果表明,对金属三维多层点阵结构样件的内部典型缺陷识别率达到99. 5%.