Optimized Mn and Bi co-doping in SnTe based thermoelectric material:A case of band engineering and d

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:zkinchow
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Tin telluride(SnTe)overwhelmingly continues to be studied owing to its promising thermoelectric prop-erties,tunable electronic structure,and its potential as an alternate to toxic lead telluride(PbTe)based materials.In this research,we engineer the electronic properties of SnTe by co-doping Mn and Bi below their individual solubility limit.The First principles density functional theory studies reveal that both Bi and Mn introduce resonance states,thereby increasing the density of states near the Fermi level leading to enhanced Seebeck coefficient.This unique combination of using two resonant dopants to introduce flatter bands is effective in achieving higher performance at lower temperatures manifesting into a large Seebeck value of~91 μV/K at room temperature in the present case.Both elements optimally co-doped results in a very high power factor value of~24.3 μW/cmK2 at 773 K when compared to other high performance SnTe based materials.A zT of~0.93 at 773 K is achieved by tuning the proportion of the co-dopants Mn and Bi in SnTe.The hardness value of pristine SnTe was also seen to increase after dop-ing.As a result,synergistic optimized doping proves to be a suitable means for obtaining thermoelectric materials of superior characteristics without the need for heavy doping.
其他文献
Increasing iron content has been witnessed an essential method to improve the remanence of 2:17-type Sm-Co-Fe-Cu-Zr magnets,however,the inferior squareness factor accompanied with the increased iron content turns into a neck sticking problem.In this work,
Layered lithium nickel-cobalt-manganese oxides(NCM)have been highlighted as advanced cathode materials for lithium-ion batteries(LIBs);however,their low interfacial stability must be overcome to ensure stable cycling performance of the cell.In this work,w
Na3(VO)2(PO4)2F(NVPOF)has been considered as one potential candidate for sodium-ion batteries because of its high operating voltage and theoretical capacity.However,the poor intrinsic electronic conductivity significantly restricts its widespread applicat
The controllable adjustment of electromagnetic(EM)properties for high-efficiency EM absorbents are indispensable,nonetheless,rare in crystals engineering regulation.Herein,for the first time,regulated amount of sodium citrate was employed as accessory lig
The influence of particle size and morphology on grain refinement in low stacking fault energy(SFE)alloys was studied by comparing the grain structures in single-and multi-phase Al-bronze(AB)alloys following equal channel angular pressing(ECAP)between 350
The effects of site occupation on the phase stability,martensitic transformation,and the magnetic and electronic properties of a full series of Ni-Mn-In alloys are theoretically studied by using the ab initio calculations.Results indicate that the excess
Oxide dispersion strengthened CoCrFeMnNi high-entropy alloys(ODS-HEAs)were prepared using two different powder preparation methods classified by yttrium addition strategy to investigate the effects of in-situ and ex-situ oxide dispersoid formation on the
In this work,the corrosion behavior of medium-carbon steels(45,45Cu and 45Cuq steels)in acidic chlo-ride environment was investigated.The results indicated that the micro-galvanic effect between the anodic ferrite matrix phase and the cathodic cementite s
Friction self-piercing riveting(F-SPR)is an emerging technique for low ductility materials joining,which creates a mechanical and solid-state hybrid joint with a semi-hollow rivet.The severe plastic deforma-tion of work materials and localized elevated te