论文部分内容阅读
从海量恒星光谱中发现稀有光谱是天文学研究的重要课题之一。与一般光谱相比,稀有光谱数量较少,因此,传统分类方法无法正常工作。究其原因是这些方法不仅在分类决策时并未对稀有光谱予以更多关注,而且只关注分类的准确率。鉴于此,在总结当前分类方法的基础上,深入分析互信息与决策树之间的关系,提出基于互信息的代价缺失决策树。SDSS DR8中 K 型、F型、G型以及 M型恒星光谱上的比较实验表明,与传统分类方法相比,所提方法能够较好地完成稀有光谱识别的任务。