论文部分内容阅读
传统的基于鲁棒主成分分析的高光谱异常探测模型中,稀疏异常矩阵假设为非低秩且其非零元素满足随机分布条件。这导致稀疏矩阵的非零元素影响低秩背景矩阵的估计,进而制约背景信息和异常信息的有效分离。提出列式鲁棒主成分分析的异常探测方法,改进异常矩阵为列稀疏条件来解决上述问题。该方法分解高光谱影像2维矩阵为低秩背景矩阵,列稀疏异常矩阵和噪声矩阵,松弛目标方程为凸优化问题,并采用非精确增强拉格朗日乘子算法来求解得到列稀疏异常矩阵的最优估计。最后,对稀疏异常矩阵中所有列的L2范数值进行阈值分割来探测得到异常像元。利用两个