基于二维局部均值分解的图像边缘检测算法

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:Test_518
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对二维局部均值分解(bidimensional local mean decomposition,BLMD)中影响算法速度的两个主要因素:自适应搜索窗口和迭代终止条件,提出了优化方法,并在其基础上提出了一种边缘检测算法。该算法采用Delaunay三角剖分得到局部极值点的理想规则化的三角网格,通过网格划分确定相邻极值点及滑动平均窗口的大小,并提出了一种新的BLMD算法迭代收敛条件,通过对人工合成图像以及自然图像的实验,证实了该优化算法与原算法结果非常接近甚至更优,且大幅度提高了计算速度。对BLMD得到的最
其他文献
利用GIS的空间分析功能,以混凝土拌和系统为依托,对影响其场地选址的各种空间因素进行可视化分析,通过叠加计算得出分析优选结果这一研究成果为水电工程施工场地选址提供了科
挑战?机遇?目前,多数发电厂已实现单元机组的计算机控制、数据采集与监控,还配置了一些故障诊断系统.另一方面,电厂管理信息系统也纷纷上马.但在生产过程中,控制系统与管理系
最近邻特征空间嵌入(nearest feature space embedding,NFSE)方法选取最近邻特征空间时使用欧氏距离度量,导致样本的类内离散度和类间离散度同步变化,无法准确反映样本在高维空间的分布;选取每个样本最近邻特征空间都要遍历所有类,导致训练时间长。针对以上问题,提出非线性距离的最近邻特征空间嵌入改进方法(nearest feature space embedding meth
特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularization,L21GKDA)。利用核函数将原始样本隐式地映射到高维特征空间中,得到广义核Fisher鉴别
1管理信息系统1.1设备资产全程管理成为管理信息系统的基本目标
针对多个无人机(unmanned aerial vehicle,UAV)执行基于视觉的目标跟踪的最佳协调问题,提高不可预知的地面目标的最佳结合点的视觉测量效果,提出了一种基于随机网格回归Monte