论文部分内容阅读
主动学习从大量无标记样本中挑选样本交给专家标记.现有的批抽样主动学习算法主要受3个限制:(1)一些主动学习方法基于单选择准则或对数据、模型设定假设,这类方法很难找到既有不确定性又有代表性的未标记样本;(2)现有批抽样主动学习方法的性能很大程度上依赖于样本之间相似性度量的准确性,例如预定义函数或差异性衡量;(3)噪声标签问题一直影响批抽样主动学习算法的性能.提出一种基于深度学习批抽样的主动学习方法.通过深度神经网络生成标记和未标记样本的学习表示和采用标签循环模式,使得标记样本与未标记样本建立联系,再回到相同