论文部分内容阅读
针对高维数据“维数灾难”问题,降维是最典型的处理方式之一.降维技术不仅可以减弱“维数灾难”的负面影响,而且能够剔除高维数据中的冗余特征,从而提升高维数据回归、分类等任务的效率.高维数据通常呈现出复杂或非线性结构,恰当的降维方法可以有效地将高维特征数据投影至低维空间,以实现原始数据的非线性特征提取.本文尝试使用无监督学习模型稀疏自编码网络对金融高维数据进行非线性特征提取,将提取到的特征作为有监督学习模型BP神经网络的输入以预测指数收益率.更进一步地,为了验证稀疏自编码算法在特征提取方面的优势与有效性,本文引入稀疏主成分模型进行对比分析.实证分析显示:本文所使用的稀疏自编码网络能够较好地提取非线性特征并进行预测,其预测精度优于以稀疏主成分为代表的线性降维方法.