论文部分内容阅读
针对带有概念漂移的数据流的分类问题,提出一种新颖的能够识别并且适应概念漂移数据流的分类算法。该算法将原始数据流沿着时间轴划分为若干数据块后,选择第一块中有代表性的数据作为样本训练模型,从而减轻了噪声和边界对分类精度的影响,使得漂移检测能较为全面且对离群点不过于敏感;此后对随后的数据块进行分类,并依据分类结果动态修正当前分类模型。实验结果表明:该方法能够根据数据流的当前状况自动调整分类模型,快速适应数据流概念漂移的情况,并得到较好的分类效果。