基于卷积神经网络的数码印花缺陷分类算法

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:n4fc561v4
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对应用深度学习检测数码印花缺陷需准确分类的问题,提出了基于卷积神经网络(CNN)的数码印花缺陷分类算法。该方法首先依次对图像进行RGB颜色空间直方图均衡化、高斯滤波、局部均值分辨率调整的图像预处理,提升输入网络的图像质量,并进行图像几何变换的数据增强,扩充样本数据集;然后,设计拓扑结构为2个卷积层、2个池化层、2个全连接层的CNN网络对样本进行训练,得出最优的数码印花缺陷分类CNN模型。经600张测试样本验证,结果表明,该算法对各类数码印花缺陷的分类准确率均超过90.0%,多分类任务Kappa系数
其他文献
探究式教学就是指教学过程是在教师的启发诱导下,以学生独立自主学习和合作讨论为前提,以学生原有知识、周围世界和生活实际为参照对象,为学生提供自由表达、质疑、探究、讨
期刊
鸡西矿业集团公司张辰煤矿西三采区3
期刊
针对当前人脸关键点检测算法网络模型复杂度高、在计算资源受限时不利于部署的问题,基于知识蒸馏思想,提出了一种高精度、轻量级的人脸关键点检测算法。通过改进残差网络(ResNet50)中的Bottleneck模块并引入分组反卷积,得到轻量级的学生网络。同时提出逐像素损失函数和逐像素对损失函数,通过对齐教师网络与学生网络的输出特征图与中间特征图,将教师网络的先验知识迁移至学生网络,从而提高学生网络的检测精
鸡西矿业集团公司张辰煤矿西三采区3
期刊
针对上下文感知相关滤波跟踪算法中提取目标周围背景信息训练滤波器时,未考虑滤波器时间一致性的问题,当目标出现外观突变时,滤波器无法适应连续两帧图像中目标和背景信息的变化,易出现目标漂移等问题,提出一种自适应上下文感知相关滤波跟踪算法。首先,将目标周围的背景信息学习到滤波器中,增加滤波器对背景信息和目标的分类能力,加入时间感知项,保证学习连续两帧图像的滤波器尽可能一致。然后,采用线性插值法用于确定目标