采用改进重采样和BRF方法的定义抽取研究

来源 :中文信息学报 | 被引量 : 0次 | 上传用户:lxbyftk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了从专业领域语料中发现并获取所有的专业术语定义,该文提出了使用分类方法进行专业术语定义抽取的方法。该文采用一种基于实例距离分布信息的过采样方法,将其与随机欠采样方法结合用以建立平衡训练语料,并使用BRF(Balanced Random Forest)方法来获得C4.5决策树的聚合分类结果。该方法获得了最好65%的F1-measure成绩和78%的F2-measure成绩,超过了仅使用BRF方法取得的成绩。
其他文献
百度百科包含了大量的实体和丰富的链接与分类关系,在中文领域含有大量人类知识,能够弥补普通词典词汇覆盖面小的缺点。在商品品牌名称挖掘中,该文提出了发现新的品牌名称的
多文档自动文摘能够帮助人们自动、快速地获取信息,是目前的一个研究热点。相比于单文档自动文摘,多文档自动文摘需要更多考虑文档之间的相关性,以及文档信息之间的冗余性。
该文提出了一种简单、快速的藏文网页文本分类方法。该方法利用网页栏目中词条的类别特征,结合网页文本提取技术,实现了快速、精确地将藏文网页文本归于预定义类别中。实验表