论文部分内容阅读
提出并论证了一种基于神经网络的感应电动机特性辨识新方法,只需测得电机两相电流数值便可以辨识出电动机转矩和转速,用改进的Levenberg—Marquardt算法对神经网络进行学习和训练。构建了适合电动机转矩转速观测的BP神经网络。由于RBF神经网络无论是在逼近能力、函数拟合和学习速度方面都优于BP网络,也利用RBF网络进行了辨识。该方法较已经提出的方法相比,需要的检测量少,辨识方法简单。仿真研究表明,RBF神经网络辨识效果优于BP神经网络。