论文部分内容阅读
针对传统智能优化算法对混沌系统参数辨识精度低、速度慢的问题,提出一种基于反馈教学优化算法的混沌系统参数辨识的新方法。该方法以教学优化算法为基础,在教授-学习阶段之后加入反馈阶段,同时将参数辨识问题转化为参数空间上的函数优化问题。分别以三维二次自治广义Lorenz系统、Jerk系统和Sprott-J系统为待辨识模型,对粒子群优化算法、量子粒子群优化算法、教学优化算法及反馈教学优化算法进行了对比实验,反馈教学优化算法辨识误差为零,搜索次数明显减少。仿真结果表明,反馈教学优化算法明显提高了混沌系统参数辨识