论文部分内容阅读
关于等腰三角形,我们熟知它的两条性质1.等腰三角形的两个底角相等(即等边对等角);2.等腰三角形底边上的高、中线、顶角平分线互相重合(三线合一).这两条性质的逆命题也成立,成为等腰三角形的判定.以上的性质和判定,主要是关注底边和底角,经过对等腰三角形的深入思考,发现其还有关于两腰的性质和判定.思考一等腰三角形两腰上的中线、高、底角平分线相等(证明略).思考二上述命题的逆命题也成立.以下对思考二加以证明.
About isosceles triangle, we are familiar with its two properties 1. Isosceles triangle two base angles equal (ie, equilateral equiangular); 2. Isosceles triangle bottom edge of the high, middle, top angle bisector of each other Coincidence (three-in-one) .On the nature of the inverse proposition also set up to become the determination of isosceles triangle.The above properties and judgments, mainly focus on the bottom and bottom corners, through the isosceles triangle in-depth thinking and found that There are also on the nature of the two lumbar and judge.Positive thinking about the midpoint of the first lumbar triangle on both sides of the waist, high, base angle bisector equal (proof omitted) .Two of the above proposition inverse problem is also established.