论文部分内容阅读
经验模式分解(EmpiricalModeDecomposition,EMD)是一种完全由数据驱动的自适应非线性时变信号分解方法,它将数据分解成具有物理意义的几个内蕴模式函数分量。介绍了一维EMD、二维EMD的基本概念、主要算法及其主要应用,指出了EMD的主要优点和缺点,给出了EMD研究与应用的发展趋势。