论文部分内容阅读
对迭代无迹卡尔曼滤波算法在SLAM问题中的应用进行仿真研究。通过仿真分析发现,与一般的无迹卡尔曼滤波算法相比,迭代的算法有时无法提高SLAM的精度,继而探讨了SLAM问题中选择采用迭代算法的条件;同时针对迭代算法的观测更新阶段,用阻尼的高斯-牛顿迭代方法改进完全高斯-牛顿迭代方法,从而提出一种改进的基于迭代无迹卡尔曼滤波的SLAM算法。仿真实验对提出的迭代条件进行了验证,仿真结果表明提出的SLAM算法与无迹卡尔曼滤波算法相比,可以进一步提高SLAM问题的估计精度。