论文部分内容阅读
提出一种基于形态分量思想的多聚焦图像融合算法。该方法首先对源图像迭代分解,将其分解为低频和高频两个分量,并用curvelet变换表示低频分量,然后,对低频分量采用高斯差分算子定义图像点的特征活跃度和融合规则,对高频分量的细节特征度量采用加权梯度差的方法来衡量和融合。仿真实验在四组多聚焦图像中进行,除了与传统的图像融合算法做比较外,还与系数绝对值最大法的融合算法进行比较。实验结果表明:该方法在平均梯度、空间频率、信息熵等指标上优于传统的图像融合方法,同时也优于基于系数绝对值最大法的融合规则。