一种带隐私保护的基于标签的推荐算法研究

来源 :计算机科学 | 被引量 : 0次 | 上传用户:lianlianforever
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在基于标签的推荐中,标签起着联系用户和信息资源的作用。但由于存在语义特性,相较于评分数据,标签数据在一定程度上更能够直接反映用户喜好,隐私问题更为突出。推荐服务器收集用户的历史标签记录,一旦攻击者通过攻击推荐服务器而获得了用户信息,将造成严重的用户隐私泄露问题。对此,提出一种带有隐私保护的基于标签k-means聚类的资源推荐方法 CDP k-meansRA,即利用Crowds网络进行用户发送方匿名保护,并且将ε-差分隐私保护融入改进的标签k-means聚类算法中。通过实验将提出的CDP k-meansRA
其他文献
当今社会,人们越来越多地通过社交网络来发言、聊天、交友。在互动过程中,除了用户主动关注感兴趣的人之外,社交网络也会为其推荐朋友。然而,所推荐的朋友大部分只是社交网络
广义极小残量法(GMRES)是最常用的求解非对称大规模稀疏线性方程组的方法之一,其收敛速度快且稳定性良好。Intel Xeon Phi众核协处理器(MIC)具有计算能力强、易编程、易移植等特
问句理解是问答系统的主要任务之一。现有的问句理解方法大多是针对简单句的,且侧重于某种句式结构的理解。提出一种多领域问句理解研究方法,其涉及领域包括人物类、电影类、
近年来,大型多人在线角色扮演游戏(MMORPG)已经成为最流行的网络娱乐活动之一。MMORPG在游戏环境中形成虚拟社会,其中每个玩家扮演某个虚构角色,并控制该角色的大多数活动。
随着网络的飞速发展,餐饮类的评价信息数量急剧增加。对餐饮评价进行有效分析不仅能够帮助消费者进行用餐选择,还可以帮助商家对餐厅服务进行改进。为此,提出了一种基于LDA(La
事件事实性指出了事件发生与否的确定性程度,是自然语言理解的基础。在研究过程中,针对中文事件的事实性识别问题,提出了一种基于特征工程的有效识别方法。该方法选取事件的事实