论文部分内容阅读
针对目前神经网络在处理类似生物信息数据库这类较大规模数据时,遇到的大规模数据处理耗时过长、内存资源不足等问题.在分析当前神经网络分布式学习的基础上,提出了一种新的基于Agent和切片思想的分布式神经网络协同训练算法.通过对训练样本和训练过程的有效切分,整个样本集的学习被分配到一个分布式神经网络集群环境中进行协同训练,同时通过竞争筛选机制,使得学习性能较好的训练个体能有效地在神经网络群中迁移,以获得较多的资源进行学习.理论分析论证了该方法不仅能有效提高神经网络向目标解收敛的成功率,同时也具有较高的并行计算性