论文部分内容阅读
The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform P ] matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation.
The successive stress-induced martensite morphologies and mechanisms in polycrystalline CuAlMnZnZr samples have been examined. By applying stress to the uniform P] matrix, two or more orientation plates of M18R martensite are stress-induced in a grain. With further increasing stress, one orientation plate depletes the other and coalesces into a single region in some view field. The mechanisms by which these are developed have been ascertained, and include variant-variant coalescence, stress-induced martensite to martensite transformation and the complicated cross-like stress-induced martensite formation.