【摘 要】
:
为了解决4台大直径泥水盾构在以黏土、粉土和粉细砂层等软弱细颗粒为主的富水地层且要在同一个超深竖井中实现“低风险”快速接收的难题,以京沈高铁望京隧道工程为依托,采用U
【机 构】
:
中铁隧道集团二处有限公司,石家庄铁道大学土木工程学院
论文部分内容阅读
为了解决4台大直径泥水盾构在以黏土、粉土和粉细砂层等软弱细颗粒为主的富水地层且要在同一个超深竖井中实现“低风险”快速接收的难题,以京沈高铁望京隧道工程为依托,采用U形素地下连续墙+超深三轴搅拌桩+RJP超高压旋喷加固地层,并辅以降水井等多种地层加固措施,提高接收井端头加固区的整体稳定性和止水效果,为盾构快速接收创造条件。采用陀螺仪定向+投点孔进行贯通测量,确保盾构接收精度,为接收基座的快速精确定位安装提供依据。采用水钻+绳锯切割方式破除洞门混凝土,极大地提高了洞门破除速度。洞门钢环安装双道钢丝刷作为接收洞
其他文献
在盾构施工过程中准确预测施工引起的地表变形,对于保障盾构施工的顺利掘进具有重要意义。基于此,提出盾构施工地表变形MIC-LSTM动态预测模型。首先,确定影响地表变形的主要
TBM深埋铁路隧道地应力水平高,应力场复杂多变。为研究TBM开挖深埋铁路隧道引起的围岩扰动,明确其应力重分布特征及产生机制,依托实际铁路隧道工程,采用FLAC 3D数值模拟软件,
为确保热力山岭隧道工程的安全快速施工和热力管道的安全运行维护,在隧道方案设计中,经过重难点技术问题归类、理论计算和多专业综合研究论证,得到如下结论:1)充分利用地形特
为了解高原富水冰碛地层的工程地质特性,剖析其隧道洞内坍塌的成因,探索其工程处治措施,以拉林铁路米林隧道为例,对上述3个方面进行深入研究,并提出施工注意事项。研究结果表
为解决厦门地铁3号线过海段盾构法与矿山法隧道海下盾构贯通施工对接工程面临的高水压、高风险、复杂地质工况下的风险处置问题,采用WBS-RBS法辨识风险源,通过AHP法建立风险