论文部分内容阅读
时间序列是一种常用的物候研究方法。为充分利用哨兵2数据在红边波段的丰富信息,本文利用多种植被指数组合成时间序列进行作物分类。将NDVI、EVI、红边NDVI三种植被指数进行组合,构建时序植被指数图像,然后使用支持向量机、随机森林、CART决策树和最大似然4种不同的算法对四种作物、三种林草、裸露地表、水体进行分类。原始分类结果中,总体精度最高的随机森林为87.92%,最低的最大似然为80.07%,在分类细节上,随机森林和支持向量机的边界最清晰,4种分类结果中,农作物的分类精度均高于其他地类,仅次于水体