论文部分内容阅读
在无线传感器网络(WSN)中,容易因为故障节点存在冗余的故障属性、噪声数据以及数据可靠性等问题,从而产生传输错误数据,这将极大地消耗WSN节点中能量和带宽,向用户形成错误的决策。为此,提出了基于蚁群算法和BP神经网络模型的WSN节点故障检测方法。通过使用蚁群算法,使用户通过寻找优化路径来定位WSN节点的位置,通过这种随机搜索算法以及蚁群算法的搜索策略使用户对WSN故障节点的位置进行总体把握。然后又基于BP神经网络模型对获取的WSN故障节点信息进一步学习,在数据训练过程中,依据WSN故障节点预测误差,并进一