论文部分内容阅读
为提高数据采掘的效率,通常需要在提供同等分析结果的情况下对原数据集进行简化。文章提出了一种有效的数据缩减算法Sodra,以无监督与有监督相结合的学习方式生成适于分类的缩减数据集。对实际数据集和人工数据集的分类实验表明,所提出的算法既能大大降低空间需求,又不损害分类性能。同时,利用缩减集上的特征分析算法Relif-P可进一步提高算法对无关特征的适应能力。