论文部分内容阅读
猕猴桃可溶性固形物含量(SSC)和硬度是评价其品质的关键参数,同时也是判别其成熟度的重要指标。为探究基于光纤光谱技术预测猕猴桃SSC、硬度和成熟度的可行性并寻求最佳预测模型。首先,采用光纤光谱(200~1000 nm)采集系统获取不同成熟期“贵长”猕猴桃的反射光谱,并测定SSC和硬度的参考值。接着,基于全光谱和参考值构建偏最小二乘回归(PLSR)和主成分回归(PCR)预测模型。然后,应用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)选取特征波长,构建简化的多元线性回归(MLR)和误差反向传播(