Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artif

来源 :中南大学学报(英文版) | 被引量 : 0次 | 上传用户:nikig
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
While various kinds of fibers are used to improve the hot mix asphalt (HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network (ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm (GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy (correlation coefficient of 0.96).
其他文献
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
考虑一类带负非局部项的Schr(ō)dinger-Poisson方程{-△u+u-λk(x)φu=(1+a(x))|u|p-1u,x∈R3,(SP)-△(φ)=k(x)u2,x∈R3.   我们有如下的假设:(p1)p∈(1,3);(a1)a:R3→R+,li
局部多项式回归是一种常用的非参数回归方法,其中局部线性回归不仅数值计算比较简单,而且有很好的渐近性质和收敛速度,二次光滑局部线性回归利用了局部线性回归的所有信息,使其渐
Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors
随着纳米科学和技术的发展,纳米材料和纳米元器件得到了广泛关注和研究。在纳米尺度,由于表面和界面在整体中所占比例显著增加,其影响逐渐重要,使得纳米材料和纳米结构元器件
差分方程组在物理学、天文学、现代生物学、人工神经网络、经济学等很多领域都有着非常广泛的应用,但目前对于非线性差分方程组我们只能对其解进行定性分析,却很难求出其精确解
为提高小麦的耐盐性,以农杆菌介导的生长点转化法将TaCHP基因导入小麦品种‘济南17’和‘济麦22’中。经潮霉素涂抹和PCR检测,T0代转基因植株的阳性率分别为6.7%和5.8%;T1代
本文依据弹性力学中的小变形理论,建立了人体-弹性织物系统的静态力学模型。通过模型及适当假设建立正问题,得到关于弹性织物位移函数的椭圆型偏微分方程组边值问题,利用有限差
水平步,上步和下步加权分别为α,β和γ的Motzkin路称作加权Motzkin路.在x轴没有水平步的加权Motzkin路称作加权Riordan路.第一章,给出了关于组合数学中的格路和Riordan矩阵的一些概念和记号.第二章,主要研究了加权Motzkin路和加权Riordan路.首先用符号化方法生成Motzkin路和Riordan路,借助Riordan矩阵的A序列和Z序列,考虑了加权Motzkin
学位