【摘 要】
:
This study explored a multi-mechanism approach to improving the mechanical properties of a CoCr-FeMnNi high-entropy alloy through non-equiatomic alloy design and processing.The alloy design en-sures a single-phase face-centered cubic structure while lower
【机 构】
:
Beijing Key Lab of Microstructure and Property of Advanced Materials,Faculty of Materials and Manufa
论文部分内容阅读
This study explored a multi-mechanism approach to improving the mechanical properties of a CoCr-FeMnNi high-entropy alloy through non-equiatomic alloy design and processing.The alloy design en-sures a single-phase face-centered cubic structure while lowering the stacking fault energy to encour-age the formation of deformation twins and stacking faults by altering the equiatomic composition of the alloy.The processing strategy applied helped create a hierarchical grain size gradient microstructure with a high nanotwins population.This was achieved by means of rotationally accelerated shot peen-ing(RASP).The non-equiatomic CoCrFeMnNi high-entropy alloy achieved a yield strength of 750 MPa,a tensile strength of 1050 MPa,and tensile uniform elongation of 27.5%.The toughness of the alloy was 2.53×1010 kJ/m3,which is about 2 times that of the same alloy without the RASP treatment.The strength increase is attributed to the effects of grain boundary strengthening,dislocation strengthening,twin strengthening,and hetero-deformation strengthening associated with the heterogeneous microstruc-ture of the alloy.The concurrent occurrence of the multiple deformation mechanisms,i.e.,dislocation deformation,twining deformation and microband deformation,contributes to achieving a suitable strain hardening of the alloy that helps to prevent early necking and to assure steady plastic deformation for high toughness.
其他文献
980 high-strength steel has been widely used in marine engineering structures due to its high strength and toughness.However,it is easily affected by the harsh environmental conditions(such as the pres-ence of sulfate-reducing bacteria,SRB),leading to the
Different types of polymer films were used in the combined in-mold decoration and microcellular injec-tion molding(IMD/MIM)process.The multiphase fluid-solid coupled heat transfer model was established to study the thermal response at the melt filling sta
Recyclable thermosets and thermoset composites with covalent adaptable networks(CANs,or dynamic covalent networks)have attracted considerable attention in recent years due to the combined merits of excellent mechanical and thermal properties,and chemical
High-entropy alloys(HEAs)have attracted tremendous attention owing to their controllable mechanical properties,whereas additive manufacturing(AM)is an efficient and flexible processing route for novel materials design.However,a profound appraisal of the f
The corrosion performances of the as-cast and solution-treated Mg-0.5Zn samples were investigated in 0.9%NaCl solution and compared.From the electrochemical measurement results and corrosion morphol-ogy observations,it is found that the corrosion resistan
We propose a method to quantitatively characterize the fine phase transition processes of Li+/Er3+∶BaTiO3(BLET)ferroelectric materials by observing fluorescence wavelength shift.A lithium and erbium co-doped barium titanate ferroelectric ceramic was fabri
The slip behavior and mechanism of large-size Mo-3Nb single crystal have been investigated and dis-closed comprehensively at room temperature by quasi-static compression with various strains.With the increase of deformation,the slip traces change from sha
Although perovskite solar cells(PSCs)have achieved a high power conversion efficiency(PCE)within a short period of development,the high-temperature sintering of the constituent electron-selective layers(ESLs)impedes the commercialization.In this report,we
Oxide-dispersion-strengthened tungsten(ODS-W)and a CuCrZr alloy were bonded by a three-step pro-cess:(i)surface nano-activation,(ii)copper plating followed by annealing,and(iii)diffusion bonding.The morphological and structural evolutions of ODS-W and the
Many non-precious metal-based catalysts with high intrinsic activity for catalytic reactions are prone to structural degradation in practical application,which leads to poor stability.In this work,we propose c-CoSe2/o-CoSe2 as the oxygen electrode of lith