论文部分内容阅读
传统获取土体物理力学参数的试验方法受土体扰动、仪器及人员操作影响,得到的结果往往较离散。研究基于统计学习理论的支持向量机(SVM)改进方法,通过使用搜索效率高的仿生学算法——微粒群算法(PSO)对支持向量机参数进行优化,提高支持向量机的预测精度,并结合三维有限元数值模拟分析,得到一种新的可快速获取参数指标的反演计算模型。从而达到在统计样本量较少的情况下,也能获得很好预测结果的目的。以实际隧道施工过程中地表沉降监测数据为依据,对隧道周围泥炭质土及黏土层加固后的压缩模量采用POS-SVM进行反演,将反演