论文部分内容阅读
目的虽然稳态子空间分析(stationary subspace analysis,SSA)算法在脑电研究领域取得了一定的成效,但目前该算法还不够完善,脑电数据分类误差还比较大,因此要想更好地研究脑电信号,就必须进一步加强算法优化,减少分类误差。本文提出了一种基于Jensen熵(Jensen-Shannon divergence,JSD)的稳态子空间分析算法,并将改进后的算法应用到二类和四类运动想象脑电信号中。方法将JSD代替原SSA算法中的KL散度(Kullback-Leibler divergence,