论文部分内容阅读
图的Fielder向量在许多应用领域扮演着重要角色,包括矩阵重排、图的分割、蛋白质分析、数据挖掘、机器学习与网络搜索等.但一般认为,计算Fiedler向量是很耗时的,因为其牵涉到特征值问题.文中提出了计算Fiedler向量的一种新方法,该方法基于收缩技术与反幂法,将Fiedler向量的计算转化为缩减矩阵最小特征值对应特征向量的计算.其次,引入了一种预条件方案来进一步减少计算量,在该方案中,可以采用任何一种针对线性方程组求解的预条件技术.对从UF稀疏矩阵集下载下来的几个稀疏矩阵对应的图,对新方法进行了实验,