论文部分内容阅读
根据多隐藏层所有训练样本误差平方和最小设计优化问题,求解并绘出计算流程图。Trevor等人认为隐藏单元过多比过少好,交叉验证估计(隐藏单元)正则化参数没有必要。还有一种通常做法是常常利用分类树挑选变量作为输入变量进行人工神经网络建模。而从人工神经网络与多元统计、传统回归和其他数据挖掘工具的区别和联系出发,认为这些观点和做法值得商酌;用ZIP编码实例说明隐藏单元过多不一定比过少好,实际数据分析中所需隐藏单元数的确定可以用交叉验证结合经验判断来实现,利用分类树选择的变量对于人工神经网络没有太大的效果;通过分类