论文部分内容阅读
第一天1.给定整数n≥2,对任意互质的正整数a_1,a_2,…,a_n,记A=a_1+a_2+…+a_n.对i=1,2,…,n,设A与a_i的最大公约数为d_i;a_1,a_2,…,a_n中删去a_i后余下的n-1个数的最大公约数为D_i.求multiply from i=1 to∞(A-a_i/d_iD_i )的最小值
First Day 1. Given an integer n≥2, let A = a_1 + a_2 + ... + a_n for any positive integers a_1, a_2, ..., a_n. Let A = 1,2, ..., n, and let A And the largest common divisor of a_i is d_i; the greatest common divisor of the remaining n-1 numbers after deleting a_i in a_1, a_2, ..., a_n is D_i. Find multiply from i = 1 to ∞ (A-a_i / d_iD_i) The minimum value